Sobel Filter

Ray Seyfarth

August 7, 2011
Outline

1. Overview

2. Sobel in C

3. Sobel computed using SSE instructions
The Sobel filter is an image processing edge detection algorithm. It involves convolution of 3×3 image windows with 2 convolution matrices:

$$S_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad S_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

The edge value, G, for a pixel at (r, c) is computed by

$$G_x = \sum_{i=-1}^{1} \sum_{j=-1}^{1} (S_x, i, j \ast I_{r+i, c+j})$$

$$G_y = \sum_{i=-1}^{1} \sum_{j=-1}^{1} (S_y, i, j \ast I_{r+i, c+j})$$

$$G = \sqrt{G_x^2 + G_y^2}$$
A simple C solution

#include <math.h>
#define matrix(a,b,c) a[(b)*(cols)+(c)]

void sobel(unsigned char *data, float *output, long rows, long cols)
{
 int r, c;
 int gx, gy;

 for (r = 1; r < rows-1; r++) {
 for (c = 1; c < cols-1; c++) {
 gx = -matrix(data, r-1, c-1) + matrix(data, r-1, c+1) +
 -2*matrix(data, r, c-1) + 2*matrix(data, r, c+1) +
 -matrix(data, r+1, c-1) + matrix(data, r+1, c+1);
 gy = -matrix(data, r-1, c-1) - 2*matrix(data, r-1, c) -
 matrix(data, r-1, c+1) +
 matrix(data, r+1, c-1) + 2*matrix(data, r+1, c) +
 matrix(data, r+1, c+1);

 matrix(output, r, c) = sqrt((float)(gx)*(float)(gx)+
 (float)(gy)*(float)(gy));
 }
 }
}
16 8 bit values can be placed in an XMM registers

The central 14 values can be used to compute 14 Sobel results

The code loaded the row \(r - 1 \) and computed part of 14 Sobel results

Then it loaded row \(r \) and added more to the 14 Sobel results

Last it loaded row \(r + 1 \) and added more to the 14 Sobel results

The contributions were added, squared, \(G_x^2 \) added to \(G_y^2 \) for 14 \(G \) values

The 14 \(G \) values were written to the output image

Using 1000 different images it processed 980 images per second vs 158 for the C code.

This is 6.2 times as fast
New instructions used for Sobel

pxor This instruction performs an exclusive or on a 128 XMM source register or memory and stores the result in the destination register.

movdqa This instruction moves 128 bits of aligned data from memory to a register, from a register to memory, or from a register to a register.

movdqu This instruction moves 128 bits of unaligned data from memory to a register, from a register to memory, or from a register to a register.

psrldq This instruction shifts the destination XMM register right the number of bytes specified in the second immediate operand.

punpcklbw This instruction unpacks the low 8 bytes of 2 XMM registers and intermingles them. I used this with the second register holding all 0 bytes to form 8 words in the destination.

punpckhbw This instruction unpacks the upper 8 bytes of 2 XMM registers and intermingles them.
New instructions used for Sobel (2)

- **paddw** This instruction adds 8 16 bit integers from the second operand to the first operand. At least one of the operands must be an XMM register and one can be a memory field.

- **psubw** This instruction subtracts the second set of 8 16 bit integers from the first set.

- **pmullw** This instruction multiplies the first set of 8 16 bit integers times the second set and store the low order 16 bits of the products in the first operand.

- **punpcklwd** This instruction unpacks and interleaves words from the lower halves 2 XMM registers into the destination register.

- **punpckhwd** This instruction unpacks and interleaves words from the upper halves 2 XMM registers into the destination register.

- **cvtdq2ps** This instruction converts 4 double word integers into 4 double word floating point values.
The Sobel assembly code

- This code is far too long to examine in slides